N-Heterocyclic Carbene/Lewis Acid Dual Catalysis for the Divergent Construction of Enantiopure Bridged Lactones and Fused Indenes

Zhan-Yong Wang, Ya-Li Ding, Shi-Ning Li, and Ying Cheng*
College of Chemistry, Beijing Normal University, Beijing 100875, China

S Supporting Information

Abstract

The chiral triazole carbene and $\mathrm{Ti}(\mathrm{OPr}-\mathrm{i})_{4}$ cocatalyzed reaction between α, β-unsaturated aldehydes and 2 (aroylvinyl)benzaldehydes was systematically studied. A divergence in reaction pathways was observed under different reaction conditions. In benzene solvent and at ambient temperature, the reaction produced 4,5-dihydro-1,4-methanobenzo[c] oxepin-3ones, the bridged caprolactones, as the major products in moderate yields with excellent enantioselectivity. The same reaction in dichloroethane and at $50^{\circ} \mathrm{C}$, however, gave 2,8 -dihydrocyclopenta $[a]$ indenes as the major products in most cases. The application of the method developed was demonstrated by the transformation of the bridged lactone products into enantiopure 4-hydroxy-1,2,3,4-tetrahydronaphthalene-2-carboxylic acids.

INTRODUCTION

The development of new strategies for the stereoselective construction of multifunctional cyclic systems has been attracting increasing interest from organic chemists. In the past decades, the N-heterocyclic carbene catalysis has been developed into a powerful protocol for the synthesis of a wide range of carbocyclic and heterocyclic compounds. ${ }^{1,2}$ Recently, the combination of NHC and acid catalysis emerges as a powerful strategy to expand the capabilities of NHC catalysis. ${ }^{3}$ The cooperative catalysis of N -heterocyclic carbenes and acids is able to enhance the reactivity of substrates including those even previously inactive reaction partners, and to improve enantioselectivity or/and diastereoselectivity., ${ }^{4,5}$ Under the cooperative catalysis of chiral NHC and Lewis or Brønsted acid catalysts, various α, β-unsaturated aldehydes undergo diverse reactions to afford five- and six-membered carbocyclic and heterocyclic compounds in enantioselective fashion. ${ }^{4,5}$ For example, the chiral triazole carbene and $\mathrm{Ti}(\mathrm{OPr}-i)_{4}$ cocatalyzed dimerization of α, β-unsaturated aldehydes and the reactions between α, β-unsaturated aldehydes and α, β-unsaturated ketones permit efficient synthesis of substituted cyclopentanes or cyclopentenes with excellent enantioselectivity. ${ }^{4 \mathrm{a}, \mathrm{b}}$ On the other hand, under the dual catalysis of chiral triazole carbene and LiCl or chiral phosphoric acid, the alkenyl aldehydes or alkynyl aldehydes underwent formal [3+2] cycloaddition with the $\mathrm{C}=\mathrm{O}$ bond of α-carbonyl ketones including α-ketoesters and isatins to produce γ-butyrolactones or γ-lactone-spirooxindoles in good yields with high stereoselectivities. ${ }^{4 \mathrm{c}, 5 \mathrm{a}}$ Similarly, the [3+2] cycloaddition of α, β-unsaturated aldehydes
to the $\mathrm{C}=\mathrm{N}$ bond of α, β-unsaturated imines or hydrazones catalyzed by the chiral triazole carbene and Lewis or Brønsted acid has been reported to generate enantiopure γ-butyrolactam derivatives. ${ }^{4 f, 5 \mathrm{~b}}$ Furthermore, both the reaction of α-bromoenals with isatins catalyzed by chiral NHC/Lewis acid and the reaction of enals with α-trifluoromethyl ketones catalyzed by a combination of NHC, Lewis acid, and oxidant underwent [4+2] cycloadditions, leading to the formation of δ-lactone-spiro-oxindoles or δ-lactone derivatives. ${ }^{4 e, g}$ Although many NHC-catalyzed reactions have been employed successfully in the synthesis of mono-, fused-, and spiro-heterocycles or carbocycles, to the best of our knowledge, the construction of bridged cyclic compounds by NHC catalysis is very rare. ${ }^{6}$

We have been interested for many years in the development of new NHC-catalyzed reactions for the divergent synthesis of complex molecules based on the same starting materials. ${ }^{7}$ We were delighted to discover very recently that the NHC catalysts combined with Lewis acid are capable regulating reaction pathways under varied conditions, transforming therefore the same reactants into diverse products. ${ }^{8}$ For instance, while the triazole carbene-catalyzed dimerization of 2-formylcinnamates underwent benzoin condensation followed by intramolecular oxa-Michael addition to afford isochromeno[4,3-c] isochromene products, the triazole carbene and $\mathrm{Ti}(\mathrm{OPr}-i)_{4}$ cocatalyzed dimerization of 2 -formylcinnamates proceeded through a completely different route to furnish the formation of

Received: September 23, 2016
Published: November 4, 2016

Table 1. Optimization of Reaction Conditions

isochromenone derivatives. ${ }^{8 a}$ On the other hand, while chiral triazole carbenes catalyzed an intramolecular cyclization reaction of 2 -aroylvinylcinnamaldehydes, ${ }^{9}$ a combination of chiral triazole carbene and $\mathrm{Ti}(\mathrm{OPr}-i)_{4}$ catalyzed the intermolecular dimerization under the same reaction conditions. ${ }^{8 \mathrm{~b}}$ To generalize the concept and strategy of the cooperative NHC/Lewis acid catalyzed divergent synthesis, we undertook the current study of the reaction between α, β-unsaturated aldehydes and 2-(aroylvinyl)benzaldehydes, the formyl-bearing α, β-unsaturated ketones. Conceivably, various reactions would take place between these functionalized reactants. Herein we reported chiral triazole carbene $/ \mathrm{Ti}(\mathrm{OPr}-i)_{4}$ cocatalyzed two distinct reactions, yielding 1,4 -methanobenzo [c]oxepin-3-one and 2,8-dihydrocyclopenta[a]indene derivatives.

RESULTS AND DISCUSSION

We commenced our study by investigating the reaction between cinnamaldehyde 1a and 2-(benzoylvinyl)benzaldehyde 2a. In dry dichloromethane and at ambient temperature (about $20-25^{\circ} \mathrm{C}$), no reaction between 1 a and 2 a took place in the presence of a chiral triazolium precatalyst 3a ($10 \mathrm{~mol} \%$) and DBU ($20 \mathrm{~mol} \%$). Addition of one equivalent of $\mathrm{Ti}(\mathrm{OPr}-)_{4}$ as a cocatalyst, however, led to the formation of a bridged caprolactone, namely 5 -(benzoylmethyl)-10-phenyl-4,5-dihy-dro-1,4-methanobenzo[c] oxepin-3-one 4a, and 1,3-diphenyl-2,8-dihydrocyclopenta[a]indene 5a in 21% and 8% yield, respectively (Table 1 , entries 1 and 2). To improve the synthetic efficiency, other chiral carbenes were tested. Unfortunately, in the presence of $\mathrm{Ti}(\mathrm{OPr}-i)_{4}$, the variation of

Table 2. Chiral $\mathrm{NHC} / \mathrm{Ti}(\mathrm{OPr}-i)_{4}$-Catalyzed Reaction of α, β-Unsaturated Aldehydes 1 with 2-(Aroylvinyl)benzaldehydes 2 in Benzene at Ambient Temperature

						les \%), R^{2} 20-25		 mer		
entry	1	R^{1}	2	R^{2}	R^{3}	R^{4}	time (h)	yield of 4 (\%) ${ }^{a}$	ee of $4(\%)^{b}$	yield of 5 (\%) ${ }^{a}$
1	1a	H	2a	H	H	H	12	4a: 60	99	5a: 5
2	1b	$4-\mathrm{Br}$	2a	H	H	H	12	4b: 53	99	5b: 10
3	1c	$4-\mathrm{Cl}$	2a	H	H	H	12	4c: 55	99	5c: 8
4	1d	$2-\mathrm{Cl}$	2a	H	H	H	12	4d: 62	> 99	5d: 7
5	1e	$3-\mathrm{Cl}$	2a	H	H	H	12	4e: 58	> 99	5e: 4
6	1f	4-Ac	2a	H	H	H	12	4f: 60	> 99	5f: 10
7	1 g	4-Me	2a	H	H	H	12	4g: 49	> 99	5g: 15
8	1h	$4-\mathrm{OMe}$	2a	H	H	H	12	4h: $28 / 34^{c} / 43^{\text {c,d }}$	> 99	5h: $11 / 19^{c} / 22^{c, d}$
9	1 i	2 -OMe	2a	H	H	H	12	4i: 47	99	5i: 14
10	1a	H	2 b	F	H	H	12	4j: 41	> 99	trace
11	1a	H	2c	Me	H	H	12	4k: 64	99	5k: 6
12	1a	H	2d	OMe	H	H	12	41: 70	> 99	51: 8
13	1a	H	2 e	H	F	H	24	4m: $22 / 25^{\text {c }}$	99	5m: $29 / 30^{\text {c }}$
14	1a	H	2 f	H	Me	H	24	4n: $45 / 52^{\text {c }}$	> 99	5n: $22 / 26^{\text {c }}$
15	1a	H	2 g	H	OMe	H	24	4o: $51 / 61^{\text {c }}$	> 99	5o: $24 / 28^{\text {c }}$
16	1a	H	2h	H	H	Br	12	4p: 48	> 99	5p: 6
17	1a	H	2 i	H	H	Me	12	4q: 69	> 99	5q: 9
18	1a	H	2 j	H	H	OMe	12	4r: 78	> 99	5r: 8

${ }^{a}$ Isolated yields. ${ }^{b}$ Determined by HPLC analysis on a AD-H or AS-H column. The details of HPLC separation conditions for each product 4 have been listed in Supporting Information. ${ }^{c} 20 \mathrm{~mol} \%$ of catalyst 3 a was used. ${ }^{d}$ The reaction was carried out at $50{ }^{\circ} \mathrm{C}$.
a serial of chiral triazoliumsalts $\mathbf{3 b} \mathbf{- 3 f}$ as NHC precatalysts did not result in the high yields of products 4 and 5 (Table 1, entries 3-7). On the other hand, however, the addition of one equivalent of isopropanol as an additive in the $3 \mathbf{a} / \mathrm{Ti}(\mathrm{OPr}-i)_{4^{-}}$ catalyzed reaction slightly increased the yields of $\mathbf{4 a}$ and $\mathbf{5 a}$ to 29% and 13%, respectively (Table 1 , entry 8). To further promote the reaction of $\mathbf{1 a}$ with $\mathbf{2 a}$, the reaction temperature was then elevated to the boiling point of dichloromethane. Pleasingly, the formation of the bridged lactone $\mathbf{4 a}$ in 41% yield with 96% ee, along with the formation of 38% yield of fused indene 5a (4a:5a $\sim 1: 1$) was observed (Table 1, entry 9). In refluxing DCM, the increase of the loading of $i-\mathrm{PrOH}$ to 200 $\mathrm{mol} \%$ or of DBU to $50 \mathrm{~mol} \%$ did not benefit to the formation of either $4 \mathbf{a}$ or $5 \mathbf{5 a}$ (Table 1, entries 10 and 11). The use of other Lewis acids, such as $\mathrm{Mg}(\mathrm{OBu}-t)_{2}, \mathrm{Mg}(\mathrm{OTf})_{2}, \mathrm{Sc}(\mathrm{OTf})_{3}$, and LiCl , did not facilitate the reaction. The replacement of DBU by other bases including $\mathrm{AcONa}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{NaH}$, t BuOK, and DMAP all led to diminished yields of both the major product $\mathbf{4 a}$ and the total yields of $\mathbf{4 a}$ and $\mathbf{5 a}$ (Table 1, entries 12-17). Therefore, the combination of chiral triazolium salt 3a, DBU, $\mathrm{Ti}(\mathrm{OPr}-i)_{4}$, and $i-\mathrm{PrOH}$ was chosen as a cooperative catalytic system for further optimization. The reaction of $\mathbf{1 a}$ with 2 a was then examined in a number of solvents at $50^{\circ} \mathrm{C}$. It was found that the reactions in chloroform, THF, acetone, and acetonitrile gave even worse results than that in dichloromethane (Table 1, entries 18-21). Delightfully, both the chemical yield of product $\mathbf{4 a}$ and the selectivity of $\mathbf{4 a}$ over 5 a were improved when toluene and benzene were utilized as solvents. The bridged lactone 4 a was isolated in 50% and
57% yields, along with 18% and 15% yields of $\mathbf{5 a}$, respectively. Moreover, the enantiomeric excess values of 98% and 99% were obtained for product 4a (Table 1, entries 22 and 23). Interestingly, the reaction in 1,2-dichloroethane reversed the selectivity between $\mathbf{4 a}$ and $\mathbf{5 a}$, affording $\mathbf{4 a}$ and $\mathbf{5 a}$ in 33% and 41% yields at $50^{\circ} \mathrm{C}$ (Table 1, entry 24). To further improve the chemical yield and the selectivity, other reaction parameters were further optimized in benzene and 1,2-dichloroethane, respectively. In benzene solvent, while an elevating reaction temperature as $80^{\circ} \mathrm{C}$ marginally affected the formation of both $\mathbf{4 a}$ and 5 a , the reaction at ambient temperature was found to significantly increase the selectivity, leading to the formation of 4a in 60% ($>99 \%$ ee) and $\mathbf{5 a}$ only in 5% yields, respectively (Table 1, entries 25 and 26). The increase of the loading of carbene precatalyst 3a to $20 \mathrm{~mol} \%$ or $\mathrm{Ti}(\mathrm{OPr}-\mathrm{i})_{4}$ to $150 \mathrm{~mol} \%$ in benzene has a negligible effect to the production of 4 a (55$57 \%$), but led to a slightly increased yield of 5 a ($12-18 \%$) (Table 1, entries 27 and 28). In the case of reaction in 1,2dichloroethane and at $50^{\circ} \mathrm{C}$, the reaction catalyzed by $10 \mathrm{~mol} \%$ of carbene and $150 \mathrm{~mol} \%$ of $\mathrm{Ti}(\mathrm{OPr}-i)_{4}$ produced 50% yield of $\mathbf{5 a}$ and 33% yield of $\mathbf{4 a}$ (99% ee) (Table 1, entry 29). When the carbene catalyst 3a was loaded to $20 \mathrm{~mol} \%$ or $\mathrm{Ti}(\mathrm{OPr}-i)_{4}$ to $200 \mathrm{~mol} \%$, or the reaction temperature was increased to the boiling point of 1,2 -dichloroethane, no dramatic effect was observed in terms of efficiency and selectivity (Table 1, entries $30-32$). In order to synthesize selectively the 2,8 dihydrocyclopenta $[a]$ indene 5 a , some achiral triazolium, imidazolium, imidazolinium, and thiazolium salts were also employed as the carbene precatalysts. Disappointingly, none of
 Dichloroethane at $50{ }^{\circ} \mathrm{C}$

		 mmol) mmol)			es $\rightarrow R^{3}$ \%),	 mic 4	$\begin{gathered} \mathrm{R}^{4} \mathrm{R}^{2} \\ + \\ \mathrm{R}^{3} \end{gathered}$		
entry	1	R^{1}	2	R^{2}	R^{3}	R^{4}	time (h)	yield of $5(\%)^{a}$	yield of 4 (\%) ${ }^{a}$
1	1a	H	2a	H	H	H	12	5a: 50	4a: 33
2	1 b	4-Br	2a	H	H	H	12	5b: 38	4b: 18
3	1c	4-Cl	2a	H	H	H	12	5c: 42	4c: 15
4	1 g	4-Me	2a	H	H	H	12	5g: 48	4g: 22
5	1h	4-OMe	2a	H	H	H	12	5h: 40	4h:11
6	1 i	2 -OMe	2a	H	H	H	12	5i: 40	4i: 29
7	1a	H	2b	F	H	H	12	5j: $15 / 20^{\text {b }}$	4j: $25 / 30^{\text {b }}$
8	1a	H	2c	Me	H	H	12	5k: 52	4k: 33
9	1a	H	2d	OMe	H	H	12	51: $26 / 37^{\text {b }}$	41: $41 / 34^{\text {b }}$
10	1a	H	2e	H	F	H	12	5m: 40	4m: 10
11	1a	H	2 f	H	Me	H	12	5n: 62	4n: 20
12	1a	H	2 g	H	OMe	H	12	5o: 62	40: 18
13	1a	H	2h	H	H	Br	12	5p: 43	4p: 22
14	1a	H	2 i	H	H	Me	12	5q: 36	4q:43
15	1a	H	2j	H	H	OMe	12	5r: 19/24 ${ }^{\text {b }}$	4r: $59 / 49^{\text {b }}$

${ }^{a}$ Isolated yields. ${ }^{b}$ The reaction was carried out under the catalysis of a combination of 3 a ($20 \mathrm{~mol} \%$), $\mathrm{DBU}(50 \mathrm{~mol} \%), \mathrm{Ti}(\mathrm{OPr}-i)_{4}(200 \mathrm{~mol} \%)$, and $i-\mathrm{PrOH}$ ($200 \mathrm{~mol} \%$) in refluxing dichloroethane.
them acted as an efficient promoter for the reaction between 1a and $\mathbf{2 a}$.

Under the optimized conditions for the selective formation of the bridged lactone $4 \mathbf{a}$, the substrate scopes were surveyed by employing different substituted cinnamaldehydes 1 and 2(aroylvinyl)benzaldehydes 2 . The catalytic reaction was found to tolerate both electron-donating and electron-withdrawing groups of both reactants. The electronic nature and substitution pattern of substituents influenced, however, the reactivity and selective formation of two products. For example, under the catalysis of a combination of chiral triazoliumsalt 3a ($10 \mathrm{~mol} \%$), DBU ($20 \mathrm{~mol} \%$), $\mathrm{Ti}(\mathrm{OPr}-i)_{4}(100 \mathrm{~mol} \%)$, and $i-\mathrm{PrOH}$ (100 $\mathrm{mol} \%$) in benzene at room temperature (about $20-25^{\circ} \mathrm{C}$), the presence of an electron-withdrawn group ($p-\mathrm{Br}, p-\mathrm{Cl}, m-\mathrm{Cl}, o-$ Cl , or $p-\mathrm{Ac}$) on the phenyl ring of cinnamaldehydes was beneficial to the reactions of $\mathbf{1 b} \mathbf{- 1 f}$ with $\mathbf{2 a}$, furnishing the formation of the corresponding lactones $\mathbf{4 b}-4 \mathbf{f}$ in 53-62\% yields with $99 \rightarrow 99 \%$ ee. The byproducts $\mathbf{5 b} \mathbf{- 5 f}$ were found in very low yields ($4-10 \%$) (Table 2, entries 1-6). In contrast, when the cinnamaldehyde $\mathbf{1 g}$ or $\mathbf{1 h}$ was substituted by an electron-donating p-methyl or p-methoxy group, the reaction with $\mathbf{2 a}$ became less efficient and led to the lower yield of product 4 g (49%) or 4 h (28%), although enantioselectivity remained excellent (Table 2, entries 7 and 8). An improved yield was achieved for 4 h (43% yield, $>99 \%$ ee) by increasing the loading of catalyst 3a to $20 \mathrm{~mol} \%$ and reaction temperature to $50{ }^{\circ} \mathrm{C}$, albeit the yield of byproduct 5 h was also increased (Table 2, entry 8). The move of the methoxy group from parato ortho-position of cinnamaldehyde resulted in the formation of product $\mathbf{4 i}$ in a higher yield (47\%) than that of $\mathbf{4 h}$ under the same conditions (Table 2, entries 8 and 9). The substituent effect of 2-(aroylvinyl)benzaldehydes 2 on the reaction
summarized in Table 2 indicated a favorable effect of an electron-donating group. This has been examplified by the reactions of 2-(benzoylvinyl)-5-methyl- (2c) and 2-(benzoyl-vinyl)-5-methoxybenzaldehyde 2d, which reacted efficiently with cinnamaldehyde $\mathbf{1 a}$ to give products $4 \mathbf{k}$ and 41 in 64% and 70% yields ($99 \rightarrow 99 \%$ ee) (Table 2, entries 11 and 12). The reaction of 2-(benzoylvinyl)-5-fluorobenzaldehyde $\mathbf{2 b}$ with $\mathbf{1 a}$ only produced 41% yield of $\mathbf{4 j}$ (Table 2, entry 10). Similarly, the 2-(benzoylvinyl)-4-methylbenzaldehyde 2 f and 2-(benzoyl-vinyl)-4-methoxybenzaldehyde 2 g gave much better yields of the corresponding products 4 than the 2-(benzoylvinyl)-4fluorobenzaldehyde $\mathbf{2 e}$ in the reaction with $\mathbf{1 a}$ (Table 2, entries $13-15)$. In comparison to $2-((p$-bromobenzoyl $)$ vinyl $)$ benzaldehyde 2 h that only formed 48% yield of product 4 p , 2-((p-methylbenzoyl)vinyl)benzaldehyde 2 i and 2-((p methoxybenzoyl)vinyl)benzaldehyde $2 \mathbf{j}$ also afforded higher yields of products $\mathbf{4 q}(69 \%)$ and $\mathbf{4 r}(78 \%)$ in the reaction with cinnamaldehyde 1a (Table 2, entries 16-18). It was worth noting that, although the substituents of both substrates influenced the reactivity of reaction and the selectivity between product 4 and 5 , the stereoselectivity was not affected, as all products 4 being isolated as a sole diastereomer with $99 \rightarrow 99 \%$ ee. In addition, the unconsumed cinnamaldehydes $\mathbf{1}$ that were excess to substrates 2 and the minor dimeric products of reactants 2 were also detected in the reactions.

In order to synthesize the cyclopenta $[a]$ indene products 5 , the reactions between enals $\mathbf{1}$ and 2-(aroylvinyl)benzaldehydes 2 were then carried out in 1,2 -dichloroethane at $50^{\circ} \mathrm{C}$ under the catalysis of a combination of $3 \mathrm{a}(10 \mathrm{~mol} \%)$, DBU $(20 \mathrm{~mol}$ $\%), \mathrm{Ti}(\mathrm{OPr}-i)_{4}$ ($150 \mathrm{~mol} \%$), and i - $\mathrm{PrOH}(100 \mathrm{~mol} \%)$. Since cyclopenta $[a]$ indane derivatives 5 are achiral compounds, the racemic catalyst 3a was used in these reactions. It was found

Scheme 1. Proposed Mechanisms for the Formation of (1S,4S,5R,10S)-5-(Aroylmethyl)-10-aryl-4,5-dihydro-1,4-methanobenzo[c]oxepin-3-ones 4 and 1,3-Diaryl-2,8-dihydrocyclopenta[a]indenes 5

that, while reacting in 1,2 -dichloroethane at $50{ }^{\circ} \mathrm{C}$, the substituents of substrates strongly influenced the selectivity in the formation of products 4 and 5 . Although most of the reactions examined produced fused indenes 5 as the major products, the selectivity between 5 and 4 appeared in general less satisfactory. Even in a few cases, compounds 4 were isolated as the major products. For example, all reactions of 2(benzoylvinyl)benzaldehyde 2a with cinnamaldehydes $\mathbf{1}$ attached by different substituents including $\mathrm{H}, 4-\mathrm{Br}, 4-\mathrm{Cl}, 4-$ $\mathrm{Me}, 4-\mathrm{OMe}$, and $2-\mathrm{OMe}$ groups produced the corresponding cyclopenta $[a]$ indanes 5 as major products in $38-50 \%$ yields, along with the bridged cyclic lactones 4 in 11-33\% yields (Table 3, entries $\mathbf{1 - 6}$). Compounds $\mathbf{5 k}$ and $\mathbf{5 m} \mathbf{- 5 o}$ were also obtained as the major products in $40-62 \%$ yields from the reaction of cinnamaldehyde $\mathbf{1 a}$ with 2 -(benzoylvinyl)benzaldehydes 2 c and $\mathbf{2 e - 2 g}$, which contained a $5-\mathrm{Me}, 4-\mathrm{F}$, $4-\mathrm{Me}$, or $4-\mathrm{OMe}$ group (Table 3, entries 8, 10-12). However, the 5-F and 5-OMe substituted 2-(benzoylvinyl)benzaldehydes 2 b and 2d reacted with 1a to give 5 in $15-26 \%$ yields and 4 in $25-41 \%$ yields (Table 3, entries 7 and 9). When 2(aroylvinyl)benzaldehydes $\mathbf{2 h} \mathbf{- 2 j}$ were substituted by different aroyl groups, the electron-deficient 4-bromobenzoyl group was beneficial to the formation of product 5 , while the electron-rich 4-methylbenzoyl and 4-methoxybenzoyl groups favored to the formation of 4 (Table 3, entries 13-15). Although lots of efforts have been made to improve the yields of fused indenes 5 by varying the catalytic system, reaction conditions or sequence of mixing substrates and catalysts, no significant improvement were obtained. Finally, the reactions of $\mathbf{1 a}$ with $\mathbf{2 b}, \mathbf{2 d}$, and $\mathbf{2 j}$ that produced the corresponding indenes 5 in very low yields ($15-26 \%$) were repeated under the catalysis of a larger amount of catalysts [3 a ($20 \mathrm{~mol} \%$), DBU ($50 \mathrm{~mol} \%$), $\mathrm{Ti}(\mathrm{OPr}-)_{4}{ }_{4}(200$ $\mathrm{mol} \%$), and $i-\mathrm{PrOH}(200 \mathrm{~mol} \%)]$ in refluxing dichloroethane.

Under these conditions, the yields of products $\mathbf{5 j}, 5 \mathbf{5 1}$, and $\mathbf{5 r}$ were slightly increased to 20-37\% (Table 3, entries 7, 9, 15).

The structures of products 4 and 5 were elucidated on the basis of spectroscopic data. The NMR spectra and mass data indicated that products 4 were $1+1$ adducts of cinnamaldehydes $\mathbf{1}$ and 2-(aroylvinyl)benzaldehydes 2 . The products 5 were constructed from $1+1$ addition of cinnamaldehydes 1 and 2(aroylvinyl)benzaldehydes 2 with the loss of a CO_{2} and a $\mathrm{H}_{2} \mathrm{O}$ molecule. To determine the structures and especially the stereochemistry of products beyond doubt, single crystals were cultivated. X-ray diffraction studies confirmed unambiguously that the product $\mathbf{4} \mathbf{b}$ was $(1 S, 4 S, 5 R, 10 S$)-5-(benzoylmethyl)-10(p-bromophenyl)-4,5-dihydro-1,4-methanobenzo[$[c]$ oxepin-3one, and the product $5 \mathbf{p}$ was 1 -(p-bromophenyl)-3-phenyl- 2,8 dihydrocyclopenta $[a]$ indene (see single crystal structures of $\mathbf{4 b}$ and $\mathbf{5 p}$ in Supporting Information).

To account for the formations of ($1 S, 4 S, 5 R, 10 S$)-5-(aroylmethyl)-10-aryl-4,5-dihydro-1,4-methanobenzo[c] oxepin-3-ones 4 and 1,3-diaryl-2,8-dihydrocyclopenta[a]indenes 5, two distinct cascade pathways were proposed for the reaction of enals 1 and 2-(aroylvinyl)benzaldehydes 2. As illustrated in Scheme 1, the nucleophilic addition of the homoenolates 6 derived from the enals 1 and NHC catalyst to the Ti-activated aldehyde group of 2-(aroylvinyl)benzaldehydes 2 yields an alcohol anion 7 that was coordinated with isopropoxytitanium. To avoid the steric hindrance of the indene ring, the NHCsubstituted homoenolates 6 approach preferentially to the siface of aldehyde, leading to the formation of two S-configured chiral carbon centers of 7 . The isopropanol additive might facilitate the disassociation of the coordination between hydroxyl groups and titanium(IV) to generate the free alcohol intermediates 8 from 7. An intramolecular Michael addition of enolates to the enone species of 8 , which also occurs

Scheme 2. Hydrolysis and Alcoholysis of Products 4

preferentially to the si-face of $\mathrm{C}=\mathrm{C}$ bond, gives rise to the ($1 R, 2 S, 3 S, 4 S$)-4-hydroxy-1-(aroylmethyl)-3-aryltetrahydro-naphthalene-2-carbonylimidazolium intermediates 9 (Scheme 1, pathway A). Finally, the intramolecular lactonization reaction of 9 furnishes the formation of ($1 S, 4 S, 5 R, 10 S$)-5-(aroylmethyl)-10-aryl-4,5-dihydro-1,4-methanobenzo[c]oxepin-3-ones 4.

The formation of 2,8-dihydrocyclopenta[a]indenes 5 from enals $\mathbf{1}$ and 2-(aroylvinyl)benzaldehydes 2 is more intriguing than the formation of 4 . Since reaction intermediates could not been isolated, the reaction of 1a with 2a in DCE was monitored by HPLC-MS to detect the intermediates. During the process of the reaction, the HPLC-MS spectra indicated a compound having a molecule weight of $[\mathrm{M}+\mathrm{H}]^{+}=325.1603$ (ESI MS) in the reaction mixture, which was in agreement with the weight of ($\left.\mathbf{1 a}+\mathbf{2 a}-\mathrm{CO}_{2}\right)$. Scheidt and co-workers have reported a NHC/Lewis acid-catalyzed reaction between enals and enones to form cyclopentenes via a decarboxylation of α-hydroxycarbonyl triazoium intermediates. ${ }^{4 a}$ Based on these messages, the mechanism for the formation of fused indenes 5 was proposed as indicated in Scheme 1. Plausibly, instead of the 1,4addition of enolates to the enone species of intermediates 8 in the formation of lactones 4 , the enolates 8 undergo a 1,2 addition to the carbonyl groups of enone species to form the 5-(5,8-dihydroxy-5,6,7,8-tetrahydrobenzo[8]annulene-7carbonyl)triazoium salts 10 (Scheme 1, pathway B). A intramolecular acylation and decarboxylation cascade affords the 5,6-dihydrobenzo[8]annulen-5-ols 12 (calculated MS for $12(\mathrm{M}+\mathrm{H})=325.1592)$ via the β-lactone intermediates 11. A Lewis acid-promoted dehydroxyl of $\mathbf{1 2}$ gives the transient tetrahydrobenzo[8]annulene carbocations 13, which isomerizes into the fused indene carbocations 14. A base-catalyzed deprotonation of $\mathbf{1 4}$ yields the dihydrocyclopenta[a]indenes 15. Under the reaction conditions, the dihydrocyclopenta $[a]$ indenes $\mathbf{1 5}$ isomerize into products 5 via a $[1,5]-\mathrm{H}$ sigmatropic rearrangement ${ }^{10}$ and a base-promoted [1,3]-hydrogen shift. ${ }^{7 \mathrm{~b}, \mathrm{~d}, 11}$

The 4,5-dihydro-1,4-methanobenzo[c]oxepin-3-one structure, a bridged lactone of 4-hydroxy-1,2,3,4-tetrahydronaph-thalene-2-carboxylic acid, occurs in some biological or pharmaceutical active molecules, ${ }^{12,13}$ such as neopodophyllotoxin ${ }^{12}$ that has been used in clinical antitumor agents. ${ }^{14}$ The 4,5-dihydro-1,4-methanobenzo[c] oxepin-3-ones and 4-hydroxy-1,2,3,4-tetrahydronaphthalene-2-carboxylic acid derivatives have also been used as the key intermediates in the total synthesis of various biological active natural and unnatural compounds. ${ }^{15}$ Moreover, a large number of molecules of medicinal importance possess 1,2,3,4-tetrahydronaphthalene moiety. ${ }^{16}$ We thought that the transformation of the resulting bridged lactones 4 would provide a direct approach to enantiomerically pure 1,2,3,4-tetrahydronaphthalene derivatives. To extend the application of the reaction between cinnamaldehydes 1 and 2(aroylvinyl)benzaldehydes 2, the hydrolysis or alcoholysis of
compounds $\mathbf{4 a}$ and $\mathbf{4 r}$ was conducted with 5% aqueous NaOH in THF or MeONa in methanol at ambient temperature. These reactions produced 1-(aroylmethyl)-3-aryl-4-hydroxy-1,2,3,4-tetrahydronaphthalene-2-carboxylic acids $\mathbf{1 8 a}$ and $\mathbf{1 8 r}$ or the methyl carboxylates 19a and 19r, respectively, in $70-82 \%$ yields with 98-99\% ee (Scheme 2).

CONCLUSION

In summary, we have studied the cooperative chiral NHC/ Lewis acid catalyzed reaction between cinnamaldehydes and 2(aroylvinyl)benzaldehydes. The ($1 S, 4 S, 5 R, 10 S$)-5-(aroylmeth-yl)-10-aryl-4,5-dihydro-1,4-methanobenzo[c]oxepin-3-ones, a type of bridged caprolactones, were obtained in moderate yields with excellent enantioselectivity. Meanwhile, in most cases, the selective syntheses of 4,5-dihydro-1,4-methanobenzo-[c]oxepin-3-ones and 2,8-dihydrocyclopenta[a]indenes have been achieved by varying reaction conditions. The transformation of the bridged lactone products to the enantiopure 1,2,3,4-tetrahydronaphthalene derivatives extend the application of the reaction between cinnamaldehydes and 2(aroylvinyl)benzaldehydes. Thus, this work developed novel and simple methods for highly enantioselective constructions of chiral 4,5-dihydro-1,4-methanobenzo[c]oxepin-3-ones and 1,2,3,4-tetrahydronaphthalene derivatives, both have potential application in the syntheses of pharmaceutically important molecules.

EXPERIMENTAL SECTION

General Procedure for the Enantioselective Synthesis of (1S,4S,5R,10S)-5-(Aroylmethyl)-10-aryl-4,5-dihydro-1,4-methanobenzo[c]oxepin-3-ones 4 from the Reaction of α, β Unsaturated Aldehydes 1 with 2-(Aroylvinyl)benzaldehydes 2 in Benzene at Ambient Temperature. Under nitrogen atmosphere, cinnamaldehydes 1 (1 mmol), 2-(aroylvinyl)benzaldehydes 2 (0.5 mmol), (-)- N-mesityl-indeno[2,1-b]triazolo $[4,3-d][1,4]$ oxazinium salt $3 \mathrm{a}(18.4 \mathrm{mg}, 0.05 \mathrm{mmol})$, $\mathrm{Ti}\left(\mathrm{OPr}^{-\mathrm{i}}\right)_{4}(150 \mu \mathrm{~L}, 0.5$ $\mathrm{mmol})$, and $i-\mathrm{PrOH}(38.3 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ were mixed in dry benzene $(10 \mathrm{~mL})$. The resulting mixture was stirred for 5 min , and DBU (15 $\mu \mathrm{L}, 0.1 \mathrm{mmol}$) was added using a microsyringe. The reaction mixture was then stirred at room temperature $\left(20-25^{\circ} \mathrm{C}\right)$ for $12-24 \mathrm{~h}$. After removal of the solvent, the residue was chromatographed on a silica gel column eluting with a mixture of petroleum ether and ethyl acetate (PE:EA from 20:1 to10:1) to give the products 4 in 28-78\% and 5 in 4-29\% yields.
(1S,4S,5R,10S)-5-(Benzoylmethyl)-10-phenyl-4,5-dihydro-1,4-methanobenzo[c]oxepin-3-one 4a. White solid, $110 \mathrm{mg}, 60 \%$, ee $99 \%,[\alpha]^{20}{ }_{\mathrm{D}}=-101.8\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 216-217{ }^{\circ} \mathrm{C}$; IR v $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1771,1683 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.01$ (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}$, 2H), $7.38(\mathrm{dd}, J=7.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.07(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=$ $18.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=18.6,3.6 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 198.4, 176.7, 136.8, 136.7, 134.2, 134.1, 133.4, 129.9, 128.8, 128.7, 128.5, 128.2, 127.8,
127.6, 127.0, 126.9, 80.9, 47.3, 44.6, 42.4, 30.7; HRMS (TOF-ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{O}_{3}: 369.1491$; found: 369.1487 .
(1S,4S,5R,10S)-5-(Benzoylmethyl)-10-(p-bromophenyl)-4,5-dihy-dro-1,4-methanobenzo[c]oxepin-3-one $4 b$. White solid, 119 mg , 53%, ee $99 \%,[\alpha]_{\mathrm{D}}^{20}=-52.5\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 231-232{ }^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1769,1684 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.94$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=18.7,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{t}, J=4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=18.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 198.3,176.3,136.7,136.5,133.8,133.5,133.3,131.7$, 130.1, 129.5, 128.7, 128.2, 127.7, 127.2, 121.0, 80.5, 46.9, 44.4, 42.3, 30.7; HRMS (TOF-ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Br}$: 447.0596; found: 447.0591.
(1S,4S,5R,10S)-5-(Benzoylmethyl)-10-(p-chlorophenyl)-4,5-dihy-dro-1,4-methanobenzo[c]oxepin-3-one 4c. White solid, 111 mg , 55%, ee $99 \%,[\alpha]^{20}{ }_{\mathrm{D}}=-77.1\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 214-215^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1768,1685 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.01$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.37(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.19(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=18.6,9.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.55(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=18.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 198.2,176.2,136.7,136.5,133.8$, 133.5, 132.9, 132.8, 130.1, 129.1, 128.8, 128.73, 128.70, 128.1, 127.7, 127.2, 80.6, 46.8, 44.5, 42.3, 30.7; HRMS (TOF-ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{ClNa}$: 425.0914; found: 425.0913 .
(1S,4S,5R,10S)-5-(Benzoylmethyl)-10-(o-chlorophenyl)-4,5-dihy-dro-1,4-methanobenzo[c]oxepin-3-one 4d. White solid, 125 mg , 62%, ee $>99 \%,[\alpha]_{\mathrm{D}}^{20}=-189.2\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 173-174{ }^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1772,1684 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $8.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.38-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.62(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=17.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}$, $J=17.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 197.9$, $176.3,137.1,136.6,134.5,134.1,133.3,131.9,130.2,130.1,129.1$, 128.6, 128.5, 128.3, 128.1, 127.7, 127.3, 126.3, 80.4, 46.5, 44.6, 42.6, 30.9; HRMS (TOF-ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Cl}$: 403.1101; found: 403.1096.
(1S,4S,5R,10S)-5-(Benzoylmethyl)-10-(m-chlorophenyl)-4,5-dihy-dro-1,4-methanobenzo[c]oxepin-3-one $4 e$. White solid, 117 mg , 58%, ee $>99 \%,[\alpha]_{\mathrm{D}}^{20}=-75.6\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 233-234{ }^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1766,1685 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $8.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.20(\mathrm{~m}$, $2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.64(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.97(\mathrm{~m}, 1 \mathrm{H})$, 3.68 (dd, $J=18.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=$ 18.7, $3.4 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 198.1$, 176.0, 136.6, 136.4, 136.2, 134.3, 133.5, 133.3, 130.0, 129.7, 128.62, 128.57, 128.0, 127.9, 127.6, 127.2, 127.1, 125.8, 80.3, 46.9, 44.3, 42.2, 30.5; HRMS (TOF-ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Cl}: 403.1095$; found: 403.1094.
(1S,4S,5R,10S)-10-(p-Acetylphenyl)-5-(benzoylmethyl)-4,5-dihy-dro-1,4-methanobenzo[c]oxepin-3-one 4f. White solid, 123 mg , 60%, ee $>99 \%,[\alpha]_{\mathrm{D}}^{20}=-57.9\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 225-226^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1774,1682 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $8.01(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70$ $(\mathrm{d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.70$ (dd, $J=18.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=18.6$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 198.2, 197.4, 176.1, 139.7, 136.7, 136.5, 135.8, 133.8, 133.5, 130.2, 128.8, 128.7, 128.5, 128.1, 128.0, 127.7, 127.2, 80.5, 47.4, 44.4, 42.3, 30.8, 26.5; HRMS (TOF-ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}$: 433.1410; found: 433.1412 .
(1S,4S,5R,10S)-5-(Benzoylmethyl)-10-(p-methylphenyl)-4,5-dihy-dro-1,4-methanobenzo[c]oxepin-3-one 4 g . White solid, $94 \mathrm{mg}, 49 \%$, ee $>99 \%,[\alpha]^{20}{ }_{\mathrm{D}}=-80.1\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 188-189{ }^{\circ} \mathrm{C}$; IR v $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1772,1683 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.02$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.38(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.02-7.07(\mathrm{~m}$, $3 \mathrm{H}), 6.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.65(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.95-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=18.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{t}, J$ $=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=18.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 198.2,176.7,136.7,136.4,134.0,133.3$, 131.0, 129.7, 129.1, 128.58, 128.55, 128.0, 127.5, 127.4, 126.8, 80.8, 46.9, 44.6, 42.2, 30.5, 20.9; HRMS (TOF-ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{3}$: 383.1647; found: 383.1644 .
(1S,4S,5R,10S)-5-(Benzoylmethyl)-10-(p-methoxyphenyl)-4,5-di-hydro-1,4-methanobenzo[c]oxepin-3-one $4 h$. White solid, 56 mg , 28% (43% from the reaction catalyzed by $20 \mathrm{~mol} \%$ of 3 a at $50^{\circ} \mathrm{C}$), ee $>99 \%,[\alpha]_{\mathrm{D}}^{20}=-79.3\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 210-211^{\circ} \mathrm{C}$; IR v $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1772,1682 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.02$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.37(\mathrm{dd}, J=7.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{~d}, J=4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $3.69(\mathrm{dd}, J=18.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=$ 18.7, $3.6 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 198.2, 176.7, 158.1, 136.67, 136.66, 134.0, 133.3, 129.8, 128.7, 128.6, 128.0, 127.4, 126.9, 126.0, 113.8, 80.9, 55.0, 46.6, 44.8, 42.2, 30.5; HRMS (TOF-ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{4}$: 399.1596; found: 399.1591. (1S,4S,5R,10S)-5-(Benzoylmethyl)-10-(o-methoxyphenyl)-4,5-di-hydro-1,4-methanobenzo[c]oxepin-3-one 4i. White solid, 94 mg , 47%, ee $99 \%,[\alpha]^{20}{ }_{\mathrm{D}}=-90.1\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 134-135^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1770,1684 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.01$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{td}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.06 (dd, $J=6.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.69(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{td}, J=4.9,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.67(\mathrm{dd}, J=18.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=18.4,4.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 198.2,177.3,157.8,137.1$, 136.8, 134.5, 133.2, 129.6, 128.7, 128.5, 128.33, 128.25, 128.0, 127.5, 126.7, 122.4, 120.0, 110.3, 81.2, 55.1, 44.73, 44.66, 42.6, 30.9; HRMS (TOF-ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{4}$: 399.1590; found: 399.1592.
(1S,4S,5R,10S)-5-(Benzoylmethyl)-8-fluoro-10-phenyl-4,5-dihy-dro-1,4-methanobenzo[c]oxepin-3-one $4 j$. White solid, $79 \mathrm{mg}, 41 \%$, ee $>99 \%,[\alpha]^{20}{ }_{\mathrm{D}}=-65.8\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 171-172{ }^{\circ} \mathrm{C}$; IR v $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1773,1683 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.01$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.24-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.03$ (dd, $J=8.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{td}, J=8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=$ $18.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=18.6,3.7 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 198.0,176.2,160.9(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{F}}=246 \mathrm{~Hz}\right), 136.5,135.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}\right), 133.7,133.4,132.1(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 129.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right), 128.6,128.5,128.0,127.5,127.0$, $116.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right), 115.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 80.0,47.1,44.3,42.3$, 30.1; HRMS (TOF-ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~F}$: 387.1390; found: 387.1389 .
(1S,4S,5R,10S)-5-(Benzoylmethyl)-8-methyl-10-phenyl-4,5-dihy-dro-1,4-methanobenzo[c]oxepin-3-one $4 k$. White solid, 122 mg , 64%, ee $99 \%,[\alpha]_{\mathrm{D}}^{20}=-106.3\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 215-216{ }^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1772,1683 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $8.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.24(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.95$ $(\mathrm{m}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=18.6,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.35$ (dd, $J=18.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 198.4,176.7,136.7,136.6,134.2,133.8,133.31,133.25,130.5$, 129.2, 128.5, 128.4, 128.0, 127.6, 127.3, 126.7, 80.9, 47.3, 44.6, 42.2, 30.3, 20.8; HRMS (TOF-ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{3}$: 383.1641; found: 383.1641 .
(1S,4S,5R,10S)-5-(Benzoylmethyl)-8-methoxy-10-phenyl-4,5-dihy-dro-1,4-methanobenzo[c]oxepin-3-one 4I. White solid, 139 mg , 70%, ee $>99 \%,[\alpha]_{\mathrm{D}}^{20}=-142.4\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 214-215^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1771,1683 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $8.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J$ $=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.87-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{dd}, J=18.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ $(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=18.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 198.4,176.6,158.1,136.7,135.1,134.1,133.3$, 128.7, 128.6, 128.4, 128.1, 128.0, 127.6, 126.8, 115.1, 114.0, 80.8, 55.3, 47.3, 44.6, 42.2, 30.0; HRMS (TOF-ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{4}$: 399.1596; found: 399.1592.
(1S,4S,5R,10S)-5-(Benzoylmethyl)-7-fluoro-10-phenyl-4,5-dihy-dro-1,4-methanobenzo[c]oxepin-3-one 4 m . White solid, $42 \mathrm{mg}, 22 \%$ (25% from the reaction catalyzed by $20 \mathrm{~mol} \%$ of 3 a), ee 99%, $[\alpha]_{\mathrm{D}}^{20}=$ $-85.0\left(\mathrm{c}=0.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 194-195^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1770$, 1683; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.01(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=8.3,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.93(\mathrm{td}, J=8.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.68$ $(\mathrm{d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.71$ (dd, $J=18.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=18.7$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 197.8, 176.2, $163.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=247 \mathrm{~Hz}\right), 139.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}\right), 136.4,133.8,133.4$, $130.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 130.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 128.6,128.5,128.0$, 127.6, 126.9, $114.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 114.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 79.9$, 47.1, 44.1, 42.1, 30.7; HRMS (TOF-ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~F}: 387.1396$; found: 387.1393 .
(1S,4S,5R,10S)-5-(Benzoylmethyl)-7-methyl-10-phenyl-4,5-dihy-dro-1,4-methanobenzo[c]oxepin-3-one 4 n . White solid, $86 \mathrm{mg}, 45 \%$ (52% from the reaction catalyzed by $20 \mathrm{~mol} \%$ of 3 a), ee $>99 \%,[\alpha]^{20}{ }_{D}$ $=-109.6\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 250-251^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 1769, 1682; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.02(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.27(\mathrm{~m}$, $3 \mathrm{H}), 7.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.91-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=18.7,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{t}, J$ $=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=18.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 198.3,176.7,139.6,136.7,136.3,134.3$, 133.3, 131.0, 128.6, 128.5, 128.4, 128.1, 128.0, 127.7, 127.6, 126.7, 80.6, 47.3, 44.5, 42.2, 30.5, 21.3; HRMS (TOF-ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{3}$: 383.1647; found: 383.1644.
(1S,4S,5R,10S)-5-(Benzoylmethyl)-7-methoxy-10-phenyl-4,5-dihy-dro-1,4-methanobenzo[c]oxepin-3-one 40. White solid, 101 mg , 51% (61% from the reaction catalyzed by $20 \mathrm{~mol} \%$ of 3 a), ee $>99 \%$, $[\alpha]^{20}{ }_{\mathrm{D}}=-120.5\left(\mathrm{c}=0.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 189-190{ }^{\circ} \mathrm{C}$; IR $v(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right) 1768,1683 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.02(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.65$ $(\mathrm{d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.71$ (dd, $J=18.6,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.34$ $(\mathrm{dd}, J=18.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 198.2, 176.8, 160.5, 138.1, 136.6, 134.3, 133.3, 129.8, 128.6, 128.4, 128.0, 127.7, 126.7, 126.4, 113.5, 111.8, 80.5, 55.0, 47.3, 44.4, 42.3, 30.8; HRMS (TOF-ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{4}$: 399.1590; found: 399.1590.
(1S,4S,5R,10S)-5-((p-Bromobenzoyl)methyl)-10-phenyl-4,5-dihy-dro-1,4-methanobenzo[c]oxepin-3-one $4 p$. White solid, 107 mg , 48%, ee $>99 \%,[\alpha]_{\mathrm{D}}^{20}=-46.7\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 195-19{ }^{\circ}{ }^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1771,1684 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=8.6,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.03(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ $(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=18.6,9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.55(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=18.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 197.2,176.5,136.3,135.4,134.0,133.9$, 131.9, 129.8, 129.5, 128.7, 128.5, 128.4, 127.6, 127.4, 127.0, 126.8,
80.7, 47.2, 44.4, 42.2, 30.5; HRMS (TOF-ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Br}$: 447.0596; found: 447.0591 .
(1S,4S,5R,10S)-5-((p-Methylbenzoyl)methyl)-10-phenyl-4,5-dihy-dro-1,4-methanobenzo[c]oxepin-3-one 4q. White solid, 132 mg , 69%, ee $>99 \%,[\alpha]_{\mathrm{D}}^{20}=-73.6\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 204-205^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1766,1679 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 7.92 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$ (dd, $J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.21-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=$ $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=18.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ ($\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=18.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 197.9, 176.7, 144.3, 136.9, 134.4, 134.3, 134.1, 129.9, 129.4, 128.7, 128.5, 128.3, 127.8, 127.6, 127.0, 126.9, 80.9, 47.4, 44.7, 42.2, 30.7, 21.7; HRMS (TOF-ESI): $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{3}$: 383.1647; found: 383.1642 .
(1S,4S,5R,10S)-5-((p-Methoxybenzoyl)methyl)-10-phenyl-4,5-di-hydro-1,4-methanobenzo[c]oxepin-3-one $4 r$. White solid, 155 mg , 78%, ee $>99 \%,[\alpha]_{\mathrm{D}}^{20}=-66.5\left(\mathrm{c}=0.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 154-155{ }^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1772,1673 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $8.00(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=7.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.24(\mathrm{~m}$, $4 \mathrm{H}), 7.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=$ $8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.66(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.23(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{dd}, J=$ $18.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=18.3,3.7 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 196.8, 176.7, 163.8, 136.9, 134.3, 134.1, 130.5, 129.9, 128.7, 128.5, 127.8, 127.7, 127.0, 126.9, 113.9, 80.9, 55.5, 47.4, 44.7, 41.9, 30.8; HRMS (TOF-ESI): [M $+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{4}$: 399.1596; found: 399.1594.

General Procedure for the Preparation of 1,3-Daryl-2,8dihydrocyclopenta[a]indenes 5 and Racemic 5-(Aroylmethyl)-10-aryl-4,5-dihydro-1,4-methanobenzo[c]oxepin-3-ones 4 from the Reaction of α, β-Unsaturated Aldehydes 1 with 2(Aroylvinyl)benzaldehydes 2 in Dichloroethane at $50^{\circ} \mathrm{C}$. Under nitrogen atmosphere, cinnamaldehydes 1 (1 mmol), 2-(aroylvinyl)benzaldehydes $2(0.5 \mathrm{mmol})$, racemic N-mesityl-indeno[2,1-b]triazolo $[4,3-d][1,4]$ oxazinium salt $3 \mathrm{a}(18.4 \mathrm{mg}, 0.05 \mathrm{mmol})$, Ti-(OPr-i $)_{4}(225 \mu \mathrm{~L}, 0.75 \mathrm{mmol})$, and $i-\operatorname{PrOH}(38.3 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ were mixed in dry dichloroethane (10 mL). The resulting mixture was stirred for 5 min , and $\mathrm{DBU}(15 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ was added using a microsyringe. The reaction mixture was then stirred at $50^{\circ} \mathrm{C}$ for 12 h . After removal of the solvent, the residue was chromatographed on a silica gel column eluting with a mixture of petroleum ether and ethyl acetate (PE:EA from $20: 1$ to $10: 1$) to give the 1,3-daryl-2,8dihydrocyclopenta $[a]$ indenes 5 in $15-62 \%$ and racemic 4 in $10-$ 59\% yields.

1,3-Diphenyl-2,8-dihydrocyclopenta[a]indene 5a. Yellow solid, $77 \mathrm{mg}, 50 \%, \mathrm{mp} 164-165{ }^{\circ} \mathrm{C}\left(174{ }^{\circ} \mathrm{C}^{17}\right)$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1596$, 1495; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.88(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.39(\mathrm{~m}, 3 \mathrm{H})$, $7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.17(\mathrm{~m}, 2 \mathrm{H}), 4.13$ (s, 2H), $3.90(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 149.4, 147.7, 147.2, 137.2, 136.3, 136.2, 133.1, 132.8, 128.7, 128.6, 128.0, 127.4, 126.8, 126.7, 126.0, 125.97, 125.6, 122.7, 49.5, 32.7; HRMS [TOF-(-APCI)]: $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{24} \mathrm{H}_{17}$: 305.1335; found: 305.1335.

3-(p-Bromophenyl)-1-phenyl-2,8-dihydrocyclopenta[a]indene 5b. Yellow solid, $73 \mathrm{mg}, 38 \%, \mathrm{mp} \mathrm{183-184}{ }^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 1599, 1497, 1488; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.89(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 6 \mathrm{H}), 7.47(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{~s}$, 2H), $3.96(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 149.6, 148.4, 147.1, 136.2, 136.1, 135.9, 133.1, 131.7, 131.5, 128.9, 128.7, 128.3, 126.8, 126.2, 126.1, 125.7, 122.6, 120.3, 49.4, 32.6; HRMS [TOF-(-APCI)]: $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{Br}$: 383.0440; found: 383.0443.

3-(p-Chlorophenyl)-1-phenyl-2,8-dihydrocyclopenta[a]indene 5c. Yellow solid, $71 \mathrm{mg}, 42 \%$, mp $190-191^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1599$, 1494; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 2 \mathrm{H})$,
4.14 ($\mathrm{s}, 2 \mathrm{H}$), $3.93(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 149.5, 148.3, 147.1, 136.1, 135.9, 135.6, 133.1, 132.2, 131.5, 128.71, 128.69, 128.5, 128.2, 126.8, 126.12, 126.09, 125.6, 122.6, 49.4, 32.6; HRMS [TOF-(-APCI)]: $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{Cl}: 339.0946$; found: 339.0943.

3-(p-Methylphenyl)-1-phenyl-2,8-dihydrocyclopenta[a]indene 5g. Yellow solid, $77 \mathrm{mg}, 48 \%$, $\mathrm{mp} 151-152{ }^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ $1595,1510,1495 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 7.95 (d, $J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.30(\mathrm{~m}, 5 \mathrm{H}), 4.17$ (s, 2H), $3.95(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) 149.3, 147.24, 147.18, 136.6, 136.4, 136.3, 134.3, 133.3, 132.3, 129.3, 128.7, 127.9, 127.3, 126.7, 126.0, 125.9, 125.6, 122.7, 49.5, 32.7, 21.3; HRMS [TOF-(-APCI)]: $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{25} \mathrm{H}_{19}: 319.1492$; found: 319.1491 .

3-(p-Methoxyphenyl)-1-phenyl-2,8-dihydrocyclopenta[a]indene 5h. Yellow solid, $68 \mathrm{mg}, 40 \%$, $\mathrm{mp} 170-171^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 1601, 1510, 1495; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.88$ (d, $J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.07$ (s, 2H), $3.87(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) 158.6, 149.3, 147.3, 146.5, 136.5, 136.4, 133.0, 131.9, 129.9, 128.7, 128.6, 127.7, 126.7, 126.0, 125.8, 125.5, 122.5, 114.0, 55.4, 49.5, 32.7; HRMS [TOF-(-APCI)]: $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}: 335.1441$; found: 335.1443.

3-(o-Methoxyphenyl)-1-phenyl-2,8-dihydrocyclopenta[a]indene 5i. Yellow solid, $67 \mathrm{mg}, 40 \%$, $\mathrm{mp} 139-140^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1595$, 1572, 1491, 1462; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.53-7.56$ $(\mathrm{m}, 3 \mathrm{H}), 7.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.23(\mathrm{~m}, 3 \mathrm{H}), 6.96-7.02$ $(\mathrm{m}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 156.7,149.2,149.1,146.4,136.6,136.5,133.2$, 130.2, 129.7, 128.6, 128.4, 127.7, 126.5, 126.3, 125.8, 125.72, 125.65, 123.3, 120.5, 111.1, 55.3, 50.4, 32.7; HRMS [TOF-(-APCI)]: [M-$\mathrm{H}]^{-}$calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}$: 335.1441; found: 335.1443.

5-Fluoro-1,3-diphenyl-2,8-dihydrocyclopenta[a]indene 5j. Yellow solid, $26 \mathrm{mg}, 15 \%$ (20% from the reaction catalyzed by a combination of 3 a ($20 \mathrm{~mol} \%$), DBU ($50 \mathrm{~mol} \%$), $\mathrm{Ti}(\mathrm{OPr}-i)_{4}$ ($200 \mathrm{~mol} \%$), and $i-$ $\operatorname{PrOH}(200 \mathrm{~mol} \%)$ in refluxing dichloroethane.), mp $168-169{ }^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1595,1493,1468 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) $7.89(\mathrm{dd}, J=8.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=8.8,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.94(\mathrm{td}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 162.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=246 \mathrm{~Hz}\right), 151.8$, $151.7,146.8,146.5,137.0,136.1,133.0,132.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}\right), 132.2$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}\right), 128.7,128.6,127.2,126.8,126.1,125.6,123.7$ (d, $\left.J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 113.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 113.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 49.4$, 32.8; HRMS [TOF-(-APCI)]: [M-H] ${ }^{-}$calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~F}: 323.1241$; found: 323.1241.

5-Methyl-1,3-diphenyl-2,8-dihydrocyclopenta[a]indene 5k. Yellow solid, $84 \mathrm{mg}, 52 \%, \mathrm{mp} 154-155^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1596,1496$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 149.8,147.7$, 147.5, 138.1, 137.4, 136.4, 133.6, 132.6, 131.9, 128.6, 128.5, 127.6, 127.3, 126.64, 126.56, 125.9, 125.6, 122.5, 49.3, 32.6, 21.6; HRMS [TOF-(-APCI)]: $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{25} \mathrm{H}_{19}: 319.1492$; found: 319.1493.

5-Methoxy-1,3-diphenyl-2,8-dihydrocyclopenta[a]indene 51. Yellow solid, $44 \mathrm{mg}, 26 \%$ (37% from the reaction catalyzed by a combination of 3a ($20 \mathrm{~mol} \%$), DBU ($50 \mathrm{~mol} \%$), $\mathrm{Ti}(\mathrm{OPr}-\mathrm{i})_{4}(200 \mathrm{~mol}$ $\%)$, and $i-\mathrm{PrOH}(200 \mathrm{~mol} \%)$ in refluxing dichloroethane.), mp 144$145{ }^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1614,1596,1493 ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.26(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H})$,
$3.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 159.8, 151.6, 147.5, 147.2, 137.4, 136.4, 132.6, 130.4, 129.3, 128.7, 128.65, 127.1, 126.4, 125.9, 125.6, 123.6, 112.8, 111.1, 55.4, 49.1, 32.9; HRMS [TOF-(-APCI)]: $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}$: 335.1441; found: 335.1443.

6-Fluoro-1,3-diphenyl-2,8-dihydrocyclopenta[a]indene 5m. Yellow solid, $65 \mathrm{mg}, 40 \%$, mp 147-148 ${ }^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1597,1493$, 1470; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.36-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 162.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=241 \mathrm{~Hz}\right), 147.3,147.0$, $146.9,144.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}\right), 137.8,137.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5 \mathrm{~Hz}\right), 136.8$, 136.1, 134.3, 133.0, 128.7, 127.3, 127.1, $126.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 126.1$, 125.6, $114.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 109.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right), 49.5,32.0$; HRMS [TOF-(-APCI)]: [M-H] calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~F}$: 323.1241; found: 323.1240.

6-Methyl-1,3-diphenyl-2,8-dihydrocyclopenta[a]indene 5n. Yellow solid, $100 \mathrm{mg}, 62 \%$, mp $200-201^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1595$, 1493; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 147.7,146.6,137.3,136.4,136.29$, 136.27, 132.8, 132.6, 129.0, 128.7, 128.6, 127.4, 126.7, 125.9, 125.63, 125.60, 123.2, 49.5, 32.3, 21.6; HRMS[TOF-(-APCI)]: $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{25} \mathrm{H}_{19}$: 319.1492; found: 319.1491.

6-Methoxy-1,3-diphenyl-2,8-dihydrocyclopenta[a]indene 50. Yellow solid, $118 \mathrm{mg}, 70 \%, \mathrm{mp} 173-174{ }^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1599$, 1493, 1479; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.15(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}) 158.5,147.9,147.6,141.5,137.1,137.0,136.2,133.0,132.5$, $128.5,128.4,127.2,126.7,126.2,125.8,125.5,114.2,107.8,55.3,49.2$, 31.8; HRMS[TOF-(-APCI)]: $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}: 335.1441$; found: 335.1442 .

1-(p-Bromophenyl)-3-phenyl-2,8-dihydrocyclopenta[a]indene $5 p$. Yellow solid, $82 \mathrm{mg}, 43 \%$, mp $148-149{ }^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 1597, 1490; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.94(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.46(\mathrm{~m}$, $3 \mathrm{H}), 7.40(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.14$ (s, 2H), $3.90(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) 149.2, 148.0, 147.7, 137.0, 136.0, 135.2, 133.4, 131.7, 131.6, 128.6, 128.2, 127.3, 127.0, 126.9, 126.8, 126.0, 122.7, 119.5, 49.4, 32.6; HRMS [TOF-(-APCI)]: $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{Br}$: 383.0440; found: 383.0441.

1-(p-Methylphenyl)-3-phenyl-2,8-dihydrocyclopenta[a]indene 5q. Yellow solid, $57 \mathrm{mg}, 36 \%, \mathrm{mp} 132-133{ }^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 1595, 1512; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.27(\mathrm{t}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H})$, $3.91(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 149.6, 147.8, 146.2, 137.3, 136.3, 135.7, 133.6, 132.8, 132.6, 129.4, $128.5,128.0,127.3,126.69,126.65,126.0,125.6,122.7,49.5,32.6$, 21.2; HRMS [TOF-(-APCI)]: $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{25} \mathrm{H}_{19}$: 319.1492; found: 319.1493.

1-(p-Methoxyphenyl)-3-phenyl-2,8-dihydrocyclopenta[a]indene $5 r$. Yellow solid, $31 \mathrm{mg}, 19 \%$ (24% from the reaction catalyzed by a combination of 3a ($20 \mathrm{~mol} \%$), DBU ($50 \mathrm{~mol} \%$), $\mathrm{Ti}(\mathrm{OPr}-i)_{4}(200 \mathrm{~mol}$ $\%$), and $i-\operatorname{PrOH}(200 \mathrm{~mol} \%)$ in refluxing dichloroethane.), mp 166$167{ }^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1601,1510 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $(\mathrm{ppm}) 7.93(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 157.9,149.6,147.8,145.0,137.3,136.3,132.5$, 132.1, 129.5, 128.5, 128.0, 127.3, 126.8, 126.7, 126.6, 126.0, 122.7, 114.2, 55.3, 49.5, 32.5; HRMS [TOF-(-APCI)]: $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}$: 335.1441; found: 335.1440.

Hydrolysis of (1S,4S,5R,10S)-5-(Aroylmethyl)-10-aryl-4,5-di-hydro-1,4-methanobenzo[c]oxepin-3-ones 4. The 5-(aroylmeth-yl)-10-aryl-4,5-dihydro-1,4-methanobenzo[c]oxepin-3-ones 4 (0.25 $\mathrm{mmol})$ and the aqueous solution of $\mathrm{NaOH}(5 \% \mathrm{w} / \mathrm{w}, 1.9 \mathrm{~mL}, 10$ equiv) were dissolved in THF (5 mL). The resulting mixture was stirred at room temperature for 14 h . The reaction mixture was neutralized with aqueous solution of $\mathrm{HCl}(1 \% \mathrm{w} / \mathrm{w})$ to $\mathrm{pH} \sim 5-6$, and then dichloromethane $(10 \mathrm{~mL})$ was added. The organic phase was separated using a separating funnel, and the aqueous layer was extracted with dichloromethane ($10 \times 2 \mathrm{~mL}$). The combined organic solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was chromatographed on a silica gel column eluting with a mixture of petroleum ether, ethyl acetate, and dichloromethane from PE:EA = 5:1 to PE:EA:DCM = 1:1:1 to give the products 18 in $75-72 \%$ yields.
(1R,2S,3S,4S)-4-Hydroxy-1-(benzoylmethyl)-3-phenyl-1,2,3,4-tet-rahydronaphthalene-2-carboxylate $18 a$. White solid, $73 \mathrm{mg}, 75 \%$, ee $99 \%,[\alpha]^{20}{ }_{\mathrm{D}}=+124.5\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 98-99{ }^{\circ} \mathrm{C}$; IR v $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1708,1686 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta(\mathrm{ppm})$ 7.99 (dd, $J=7.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.9(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.22(\mathrm{~m}$, $4 \mathrm{H}), 4.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=11.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}$, $J=18.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=11.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.40(\mathrm{~m}$, $2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 198.2, 176.4, 141.1, 138.9, 137.1, 136.9, 133.1, 128.8, 128.5, 128.12, 128.1, 128.0, 127.8, 127.3, 127.2,127.1, 74.3, 51.6, 48.0, 47.7, 43.6, 35.0; HRMS (FT-ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}$: 409.1410; found: 409.1403.
(1R,2S,3S,4S)-4-Hydroxy-1-((p-methoxybenzoyl)methyl)-3-phe-nyl-1,2,3,4-tetrahydronaphthalene-2-carboxylate 18r. White solid, $85 \mathrm{mg}, 82 \%$, ee $99 \%,[\alpha]^{20}{ }_{\mathrm{D}}=+144.8\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 93-94$ ${ }^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1708,1675,1600 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta(\mathrm{ppm}) 10.55(\mathrm{br}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.18-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.37 (brs, 1H), 4.19 (dd, $J=10.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{dd}, J$ $=17.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=11.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.39(\mathrm{~m}$, $2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 196.6, 175.7, 163.5,141.2, 138.9, 137.1, 130.4, 129.9, 128.9, 128.1, 127.9, 127.7, 127.4, 127.1, 126.9,113.7, 74.2, 55.4, 48.2, 47.8, 42.2, 35.0; HRMS (MALDI-TOF): $[\mathrm{M}+\mathrm{K}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~K}: 455.1255$; found: 455.1284.

Alcoholysis of (1S,4S,5R,10S)-5-(Aroylmethyl)-10-aryl-4,5-dihydro-1,4-methanobenzo[c]oxepin-3-ones 4. The 5-(aroyl-methyl)-10-aryl-4,5-dihydro-1,4-methanobenzo[c] oxepin-3-ones 4 (0.25 mmol) and NaOMe ($41 \mathrm{mg}, 3$ equiv) were dissolved in methanol (10 mL). The resulting mixture was stirred at room temperature for 12 h . The reaction was quenched by the addition of saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, and then dichloromethane (20 mL) was added. The organic phase was separated and the aqueous layer was extracted with dichloromethane $(20 \times 2 \mathrm{~mL})$. The combined organic solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was chromatographed on a silica gel column eluting with a mixture of petroleum ether and ethyl acetate (PE:EA from 10:1 to 5:1) to give the products 19 in 70-76\% yields.
(1R,2S,3S,4S)-Methyl 4-hydroxy-1-(benzoylmethyl)-3-phenyl-1,2,3,4-tetrahydronaphthalene-2-carboxylate 19a. White solid, 82 $\mathrm{mg}, 76 \%$, ee $99 \%,[\alpha]^{20}{ }_{\mathrm{D}}=+130.3\left(\mathrm{c}=0.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{mp} 136-137$ ${ }^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1732,1682 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $(\mathrm{ppm}) 7.93(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.36(\mathrm{~m}, 7 \mathrm{H}), 7.20(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.33(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=$ $18.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.50 (dd, $J=11.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.31 (dd, $J=11.9$, $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{dd}, J=18.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ (brs, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 197.8, 172.8, 141.0, 139.2, 136.9, 133.0, 128.8, 128.6, 128.2, 128.1, 128.04, 128.0, 127.3, 127.2, 127.1,74.3, 51.6, 48.0, 47.7, 43.6, 35.0; HRMS (FT-ESI): [M $+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}$: 423.1567; found: 423.1563 .
(1R,2S,3S,4S)-Methyl 4-hydroxy-1-((p-methoxybenzoyl)methyl)-3-phenyl-1,2,3,4-tetrahydronaphthalene-2-carboxylate 19r. White
solid, $75 \mathrm{mg}, 70 \%$, ee $98 \%,[\alpha]^{20}{ }_{\mathrm{D}}=+146.8\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, mp $145-146{ }^{\circ} \mathrm{C}$; IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1734,1676,1601$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24-7.36(\mathrm{~m}, 7 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 4.86(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=$ $18.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{dd}, J=11.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31$ (dd, $J=11.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{dd}, J=18.1,4.0 \mathrm{~Hz}$, 1 H), 1.80 (brs, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 196.3, 172.7, 163.5, 141.1, 139.4, 137.2, 130.3, 130.0, 128.8, 128.2, 128.1, 128.0, 127.3, 127.1, 127.0,113.7, 74.3, 55.4, 51.5, 48.1, 47.8, 43.1, 35.1; HRMS (FT-ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na}$: 453.1673; found: 453.1668.

ASSOCIATED CONTENT

(5) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b02329.

Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of products 4 , 5, 18, and 19 and copies of HPLC chromatographs for product 4 (PDF)
X-ray crystallographic data of $\mathbf{4 b}$ (CIF)
X-ray crystallographic data of $\mathbf{5 p}$ (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: ycheng2@bnu.edu.cn

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (No. 21372030).

REFERENCES

(1) Some reviews for NHCs organocatalysis: (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606-5655. (b) Marion, N.; Diez-Gonzalez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988-3000. (c) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314-325.
(2) Examples for the constructions of cyclic compounds by NHCcatalyzed reactions of enals: (a) Lathrop, S. P.; Rovis, T. J. Am. Chem. Soc. 2009, 131, 13628-13630. (b) Gao, Z.-H.; Chen, X.-Y.; Zhang, H.M.; Ye, S. Chem. Commun. 2015, 51, 12040-12043. (c) Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 5334-5335. (d) Rommel, M.; Fukuzumi, T.; Bode, J. W. J. Am. Chem. Soc. 2008, 130, 1726617267. (e) Fang, X.; Jiang, K.; Xing, C.; Hao, L.; Chi, Y. R. Angew. Chem., Int. Ed. 2011, 50, 1910-1913.
(3) A review for NHC/Lewis acid cooperative catalysis: Cohen, D. T.; Scheidt, K. A. Chem. Sci. 2012, 3, 53-57.
(4) Examples for the NHC/Lewis acid catalysis: (a) Cardinal-David, B.; Raup, D. E. A.; Scheidt, K. A. J. Am. Chem. Soc. 2010, 132, 53455347. (b) Cohen, D. T.; Cardinal-David, B.; Scheidt, K. A. Angew. Chem., Int. Ed. 2011, 50, 1678-1682. (c) Dugal-Tessier, J.; O'Bryan, E. A.; Schroeder, T. B. H.; Cohen, D. T.; Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 4963-4967. (d) Bera, S.; Samanta, R. C.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2014, 53, 9622-9626. (e) Mo, J.; Chen, X.; Chi, Y. R. J. Am. Chem. Soc. 2012, 134, 8810-8813. (f) Raup, D. E. A.; Cardinal-David, B.; Holte, D.; Scheidt, K. A. Nat. Chem. 2010, 2, 766-771. (g) Xiao, Z.; Yu, C.; Li, T.; Wang, X.-S.; Yao, C. Org. Lett. 2014, 16, 3632-3635. (h) Patil, N. T. Angew. Chem., Int. Ed. 2011, 50, 1759-1761.
(5) The NHC/Brønsted acid catalysis: (a) Lee, A.; Scheidt, K. A. Angew. Chem., Int. Ed. 2014, 53, 7594-7598. (b) Zhao, X.; DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2011, 133, 12466-12469. (c) Li, J.L.; Sahoo, B.; Daniliuc, C.-G.; Glorius, F. Angew. Chem., Int. Ed. 2014,

53, 10515-10519. (d) Kato, T.; Matsuoka, S.; Suzuki, M. J. Org. Chem. 2014, 79, 4484-4491.
(6) (a) ElSohly, A. M.; Wespe, D. A.; Poore, T. J.; Snyder, S. A. Angew. Chem., Int. Ed. 2013, 52, 5789-5794. (b) Boddaert, T.; Coquerel, Y.; Rodriguez, J. Chem. - Eur. J. 2011, 17, 2266-2271.
(7) (a) Cheng, Y.; Peng, J.-H.; Li, Y.-J.; Shi, X.-Y.; Tang, M.-S.; Tan, T.-Y. J. Org. Chem. 2011, 76, 1844-1851. (b) Zhao, Y.; Wang, Z.-T.; Cheng, Y. Adv. Synth. Catal. 2014, 356, 2580-2590. (c) Wang, Z.-T.; Zhao, Y.; Wang, Z.-Y.; Cheng, Y. J. Org. Chem. 2015, 80, 1727-1734. (d) Mao, J.-H.; Wang, Z.-T.; Wang, Z.-Y.; Cheng, Y. J. Org. Chem. 2015, 80, 6350-6359.
(8) (a) Dang, H.-Y.; Wang, Z.-T.; Cheng, Y. Org. Lett. 2014, 16, 5520-5523. (b) Wang, Z.-Y.; Ding, Y.-L.; Wang, G.; Cheng, Y. Chem. Commun. 2016, 52, 788-791. (c) Wang, G.; Wang, Z.-Y.; Niu, S.-S.; Rao, Y.; Cheng, Y. J. Org. Chem. 2016, 81, 8276-8286.
(9) (a) Phillips, E. M.; Wadamoto, M.; Chan, A.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 3107-3110. (b) Li, Y.; Wang, X.-Q.; Zheng, C.; You, S.-L. Chem. Commun. 2009, 5823-5825.
(10) Examples for $1,5-\mathrm{H}$ sigmatropic rearrangements: (a) Flamini, A.; Fares, V.; Capobianchi, A.; Valentini, V. J. Chem. Soc. Perkin Trans. 1
2001, 3069-3072. (b) Alajarin, M.; Sanchez-Andrada, P.; LopezLeonardo, C.; Alvarez, A. J. Org. Chem. 2005, 70, 7617-7623.
(11) Examples for 1,3-H shifts: (a) Wei, H.; Li, Y.; Xiao, K.; Cheng, B.; Wang, H.; Hu, L.; Zhai, H. Org. Lett. 2015, 17, 5974-5977.
(b) Karmakar, R.; Mamidipalli, P.; Salzman, R. M.; Hong, S.; Yun, S. Y.; Guo, W.; Xia, Y.; Lee, D. Org. Lett. 2016, 18, 3530-3533.
(12) Examples for the synthesis of neopodophyllotoxin: (a) Charlton, J. L.; Koh, K. J. Org. Chem. 1992, 57, 1514-1516. (b) Renz, J.; Kuhn, M.; Wartburg, A. Justus Liebigs Ann. Chem. 1965, 681, 207-224.
(c) Rajapaksa, D.; Rodrigo, R. J. Am. Chem. Soc. 1981, 103, 62086209.
(13) (a) Schwarz, J. S. P.; Weisenborn, F. L.; Neidleman, S. L.; Kinney, R. W. U.S. Patent US3438999A, 1969. (b) Kinney, R. W.; Neidleman, S. L.; Weisenborn, F. L.; Schwarz, J. S. P. U.S. Patent US3462487A, 1969.
(14) Some examples: (a) Sun, Z. CN Patent CN1887262A, 2007. (b) Gao, H.; Sun, Z. CN Patent CN1887262A, 2007. (c) Gao, H. CN Patent CN1846676A, 2006.
(15) Some examples: (a) Roulland, E.; Bertounesque, E.; Huel, C.; Monneret, C. Tetrahedron Lett. 2000, 41, 6769-6773. (b) Forsey, S. P.; Rajapaksa, D.; Taylor, N. J.; Rodrigo, R. J. Org. Chem. 1989, 54, 4280-4290. (c) Wu, Y.; Zhang, H.; Zhao, Y.; Zhao, J.; Chen, J.; Li, L. Org. Lett. 2007, 9, 1199-1202. (d) Kothari, P. J.; Hathaway, B. A.; Nichols, D. E.; Yim, G. K. W. J. Med. Chem. 1981, 24, 882-884. (e) Hathaway, B. A.; Nichols, D. E.; Nichols, M. B.; Yim, G. K. W. J. Med. Chem. 1982, 25, 535-538.
(16) Some examples: (a) Cimetiere, B.; Dubuffet, T.; Landras, C.; Descombes, J.-J.; Simonet, S.; Verbeuren, T. J.; Lavielle, G. Bioorg. Med. Chem. Lett. 1998, 8, 1381-1386. (b) Stutz, A.; Georgopoulos, A.; Granitzer, W.; Petranyi, G.; Berney, D. J. Med. Chem. 1986, 29, 112125. (c) Dumas, M.; Dumas, J.-P.; Bardou, M.; Rochette, L.; Advenier, C.; Giudicelli, J.-F. Eur. J. Pharmacol. 1998, 348, 223-228. (d) Nichols, D. E.; Barfknecht, C. F.; Long, J. P.; Standridge, R. T.; Howell, H. G.; Partyka, R. A.; Dyer, D. C. J. Med. Chem. 1974, 17, 161-166.
(17) Ried, W.; Merkel, W.; Herrmann, H. J. Liebigs Ann. Chem. 1971, 750, 91-96.

